

A MINORITY RUN COLLEGE. AFFILIATED TO UNIVERSITY OF CALCUTTA RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956

Program Outcome (PO) of Graduation Degree Course of Electronics Honours (CBCS)

	Program Outcome	Description
PO1	Subject Knowledge	Knowing the fundamentals of the different areas of discussion within the subject which will enable the students to consider applying the theoretical principles in practical situations that they are likely to find themselves in as professionals after having completed the course.
	Method of Measurement:	Assessment (Internal & Final)
PO2	Communication Skills	Encouraging the students to apply the principles learned in their own fields, both professional and personal, thus, honing their communication skills and leading them towards becoming better communicators serving the society and nation as expected in the ICT age.
	Method of Measurement:	Regular Communication Activity Internal Assessment
PO3	Technical Skill Development	Knowing and developing the technical skills expected from the students in the professional arena, thus, becoming successful professional communicators/educators after finishing the program.
	Method of Measurement:	Assessment (Internal & Final)
PO4	Personality Development	Imparting personality development skills to the students that are likely to help them in their professional and personal lives, thus making them responsible and sincere citizens.
	Method of Measurement:	Regular Personality Development Internal Assessment

PO5	Higher Study Foundation	Encouraging the students to pursue higher studies in the subject and enhance their knowledge on the same.
	Method of Measurement:	Regular Teacher-Student Interactive Sessions
PO6	Research Orientation and Aptitude	Encouraging the students to pursue research avenues related to the subject either in the academic or in the professional sphere that may lead to a vibrant knowledge economy.
	Method of Measurement:	Regular Teacher-Student Interactive Sessions
PO7	Spirit of Team Work	Encouraging the students to coordinate with one another in a team environment and perform well as a team rather than trying to excel individually at the cost of group performance efficiency.
	Method of Measurement:	Group Activity Assignments Assessment

A MINORITY RUN COLLEGE. AFFILIATED TO UNIVERSITY OF CALCUTTA RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956

Program Specific Outcomes (PSO) of Graduation Degree Course of Electronics Honours (CBCS)

- 1. The students learn the fundamentals of Electronics theory and practice.
- 2. The students will appreciate the theoretical foundations related to different paradigms such as electromagnetism, quantum mechanics, communication and semiconductor devices etc.
- 3. The students learn the practicalities and techniques of professional communication practices such as in colleges, symposiums, conferences and seminars and in international platforms.
- **4.** The students become effective and ethical practitioners contributing to social and national development.

A MINORITY RUN COLLEGE. AFFILIATED TO UNIVERSITY OF CALCUTTA RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956

Course Outcomes (COs) of Graduation Degree Course of

Electronics Honours (CBCS) for the session, 2018-2021

Semester – I		
Paper	Course Outcomes	
ELT-A-CC-1-01-TH: Basic Circuit Theory and Network Analysis Basic circuit concepts, basic circuit analysis, DC and AC circuit analysis, network theorems, two port networks and network graph theorems.	1.1.1 Students learn how to apply physical laws and theorems to real circuits.	
ELT-A-CC-1-01-P: Basic Circuit Theory and Network Analysis Lab		
Familiarization with: (a) Resistance in Series, Parallel and Series-Parallel; (b) Capacitors and Inductors in Series and Parallel; (c) Multimeter - Checking of Components; (d) Voltage Sources in Series, Parallel and Series-Parallel; (e) Voltage and Current Dividers. 2. Measurement of Amplitude, Frequency and Phase Difference using CRO. 3. Verification of Kirchoff's Law. 4. Verification of Norton's Theorem. 5. Verification of Thevenin's Theorem. 6. Verification of Superposition Theorem. 7. Verification of the Maximum Power Transfer Theorem. 8. RC Circuits: Time Constant, Differentiator, Integrator. 9. Designing of a Low Pass RC Filter and study of its Frequency Response. 10. Designing of a High Pass RC Filter and study of its Frequency Response. 11. Study of the Frequency Response of a Series LCR Circuit and determination of its (a) Resonant Frequency; (b) Impedance at Resonance; (c) Quality Factor Q; (d) Band Width.	1.1.2 Critical analysis of circuit parameters in view of scientific principles, so that it leads to synthesis of elements (passive and active) for innovative outcomes.	
ELT-A-CC-1-02-TH: Mathematics Foundation for Electronics Ordinary differential equations, series solution to ODEs and special functions, matrices, sequences and series, complex variables and functions, Laplace's transforms.	1.2.1 Students understand and appreciate the various mathematical methods to solve pertinent problems.	
ELT-A-CC-1-02-P: Mathematics Foundation for Electronics Lab		

Mathematics Foundation for Electronics using simulation software like MATLAB/Scilab Solution of First Order Differential Equations. 2. Solution of Second Order Homogeneous Differential Equations. 3. Solution of Second Order Non-Homogeneous Differential Equations. 4. Convergence of a given Series. 5. Divergence of a given Series. 6. Solution of Linear System of	1.2.2 Students understand and appreciate the various mathematical methods to solve pertinent problems.
Equations using Gauss Elimination Method. 7. Solution of Linear System of Equations using Gauss-Seidel Method. 8. Solution of Linear System of Equations using L-U Decomposition Method.	
Semeste	er - II
ELT-A-CC-2-03-TH: Applied Physics	
Physics of crystalline solids, Quantum mechanics, mechanical properties of solids, thermal properties, electrical properties, magnetic properties and statistical mechanics.	2.1.1 Knowledge and understanding of various physical processes governing the structures of materials.
ELT-A-CC-2-03-P: Applied Physics Lab	
To Measure the Resistivity of a Si Crystal with Temperature by Four-Probe Method from Room Temperature to 200 OC). 2. To Determine the Value of Boltzmann Constant by Studying Forward Characteristics of Diode. 3. To Determine the Value of Planck's Constant by using LEDs of Different Wavelengths. 4. Simulation Studies: (a) Find Lowest Energy Eigenvalues for 1-D Schrodinger Equation. (b) Plotting Tunneling Probability as a Function of Barrier Width. (c) Plot Energy Band-Diagram corresponding to Different Potential Profile.	2.1.2 Analysis of various material properties to appreciate the nature of things.
ELT-A-CC-2-04-TH: C Programming and Data	
Structures C Programming language, decision making,	2.2.1 Programming language is studied to
branching and looping, structures, introduction to C++, data structures, searching and sorting	facilitate the computation and simulation abilities of the students.
ELT-A-CC-2-04-P: C Programming and Data Structures Lab	

A MINORITY RUN COLLEGE. AFFILIATED TO UNIVERSITY OF CALCUTTA RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956

1.Generate the Fibonacci Series up to the given Limit N and also Print the Number of Elements in the Series, 2. Find Minimum and Maximum of N Numbers. 3. Find the GCD of Two Integer Numbers. 4. Calculate Factorial of a given Number. 5. Find all the Roots of a Quadratic Equation Ax2 + Bx + C = 0 for Non -Zero Coefficients A, B and C. Else Report Error. 6. Calculate the Value of sin(x) and cos(x) using the Series. Also Print sin(x) and cos(x) Value using Library Function. 7. Generate and Print Prime Numbers up to an Integer N. 8. Sort given N Numbers in Ascending Order. 9. Find the Sum and Difference of Two Matrices of Order M×N and P×O. 10. Find the Product of Two Matrices of Order M×N and P×O. 11. Find the Transpose of given M×N Matrix. 12. Find the Sum of Principle and Secondary Diagonal Elements of the given M×N Matrix. 13. Calculate the Subject wise and Student wise Totals and Store them as a Part of the Structure. 14. Implement Linear and Circular Linked Lists using Single and Double Pointers. 15. Create a Stack and Perform Pop, Push, Traverse Operations on the Stack using Linear Linked List. 16. Create Circular Linked List having Information about a College and Perform Insertion at Front, Deletion at End. 17. Create a Linear Queue using Linked List and Implement Different Operations such as Insert, Delete, and Display the Queue Elements. 18. Implement Polynomial Addition and Subtraction using Linked Lists. 19. Implement Sparse Matrices using Arrays and Linked Lists. 20. Create a Binary Tree to Perform Tree Traversals (Preorder, Post-order, Inorder) using the Concept of Recursion. 21. Implement Binary Search Tree using Linked Lists. Compare its Time Complexity over that of Linear Search. 22. Implement Insertion Sort, Merge Sort, Bubble Sort, and Selection Sort.

2.2.2 Programming language is implemented to facilitate the computation and simulation abilities of the students.

Semester - III ELT-A-CC-3-05-TH: Semiconductor Devices

Semiconductor basics, carrier transport phenomena, physics of junctions, semiconductor-semiconductor homo-junction, PN junction diode, application of junction properties, bipolar junction transistors, field effect transistors, JFETs, MOSFETs, power devices.	3.1.1 Students learn the fundamentals of semiconductor devices which are the basic components of electronic equipment.
ELT-A-CC-3-05-P: Semiconductor Devices Lab	
Study of the I-V Characteristics of PN Junction Diode and Zener Diode. 2. Study of the I-V Characteristics of the Common Emitter Configuration of BJT and obtain r_i , r_o , β . 3. Study of the I-V Characteristics of the Common Base Configuration of BJT and obtain r_i , r_o , α . 4. Study of the I-V Characteristics of the SCR. 5. Study of the I-V Characteristics of the Diac. 6. Study of the I-V Characteristics of the Triac. Page $\angle 11$ 7. Study of the I-V Characteristics of JFET/MOSFET. 8. Study of Characteristics of Solar Cell. 9. Study of Hall Effect.	3.1.2 Students appreciate the operational principles of devices to understand their usefulness and viability.
ELT-A-CC-3-06-TH: Electronic Circuits	
Diode circuits, BJT circuits, feedback amplifiers, MOSFET circuits, power amplifiers, single tuned amplifiers.	3.2.1 Students learn about the electronic circuits and their functionalities involving device operation.
ELT-A-CC-3-06-P: Electronic Circuits Lab	
Hardware and Circuit Simulation Software	
1. Study of the Half-Wave Rectifier and Full-Wave (Center-tap and Bridge) Rectifier. 2. Study of Power Supply using C Filter and Zener Diode. 3. Designing and Testing of 5V/9V DC Regulated Power Supply using Two Transistors and find it's Load Regulation. 4. Study of Clipping and Clamping Circuits. 5. Study of Fixed Bias, Voltage Divider Bias and Collector-to-Base Bias Feedback Configuration for Transistors. 6. Designing of a Single Stage CE Amplifier. 7. Study of the Colpitt's Oscillator. 8. Study of the Phase Shift Oscillator 9. Study of the Frequency Response of Common Source FET Amplifier.	3.2.2 Students design the electronic circuits and their functionalities involving device operation. Experimentation facilitates the students to better understand the working principles of the devices.
FLT A CC 2 07 TH FL A	
ELT-A-CC-3-07-TH: Electromagnetics	

	•
Vector analysis, Poisson's and Laplace equations, electrostatics, magnetostatics, time-varying fields and Maxwell's equations, EM wavepropagation	3.3.1 The basic electromagnetism is appreciated by the students.
ELT-A-CC-3-07-P: Electromagnetics Lab	
Scilab/MATLAB/Any Other Similar Free Software	
1. Understanding and Plotting Vectors. 2. Transformation of Vectors into Various Coordinate Systems. 3. 2D and 3D Graphical Plotting with Change of View and Rotation. 4. Representation of the Gradient of a Scalar Field, Divergence and Curl of Vector Fields. 5. Plots of Electric Field and Electric Potential due to Charge Distributions. 6. Plots of Magnetic Flux Density due to Current Carrying Wire. 7. Programs and Contour Plots to Illustrate Method of Images. 8. Solutions of Poisson and Laplace Equations - Contour Plots of Charge and Potential Distributions. 9. Introduction to Computational Electromagnetics - Simple Boundary Value Problems by Finite Difference/Finite Element Methods.	3.3.2 These help to better visualize the electric and magnetic fields and their mathematical manipulations which are the central concepts in EM theory.
SEC-1: Group-A (SEC-A) Option-1 (SEC-1-A-1) ELT-A-SEC-3-A-1-HT: Design and Fabrication of Printed Circuit Boards	3.4.1 Hands-on training in circuits development and practical troubleshooting.
PCB Fundamentals, Schematic and Layout Design, Technology of PCB and PCB Technology	
SEC-1: Group-A (SEC-A) Option-2 (SEC-1-A-2) ELT-A-SEC-3-A-2-HT: Circuit Modeling using PSPICE	3.5.1 Circuit development using coding knowledge is developed.
Introduction, basic analysis and circuit modeling	
Semeste	er – IV
Core Course (CC) - 8 Theory ELT-A-CC-4-08-TH: Operational Amplifiers and Applications	
Basic Operational Amplifier, Op-Amp	4.1.1 Understanding the fundamental analog electronic devices which make up larger electronic equipment.

	(F) & 12 (B) OF THE UGC ACT, 1956
Variable IC Regulators,	
Signal Conditioning Circuits	
Core Course (CC) - 8 Practical ELT-A-CC-4-08-P: Operational Amplifiers and Applications Lab	
Handware and Cinevit Simulation Software	4.1.2 The related practical knowledge to
 Hardware and Circuit Simulation Software Study of Op-Amp Characteristics: CMRR and Slew Rate. Designing of an Amplifier of given Gain for an Inverting and Non-Inverting Configuration using an Op- Amp. Designing of Analog Adder and Subtractor Circuit. Designing of an Integrator using Op-Amp for a given Specification and Study its Frequency Response. Designing of a Differentiator using Op-Amp for a given Specification and Study its Frequency Response. Designing of a First Order Low-Pass Filter using Op-Amp. Designing of a First Order High-Pass Filter using Op-Amp. Designing of a RC Phase Shift Oscillator using Op-Amp. Designing of a Wien Bridge Oscillator using Op-Amp. 	understand electronic circuits
10. Study of IC 555 as Astable Multivibrator. 11. Study of IC 555 as Monostable Multivibrator. 12. Designing of Fixed Voltage Power Supply using IC Regulators using 78 Series and 79 Series. Core Course (CC) - 9 Theory ELT-A-CC-4-09-TH: Digital Electronics and	
VHDL	
Number System and Codes, Logic Gates and	4.2.1 Understanding the fundamental digital
Boolean Algebra, Digital Logic Families, Combinational Logic Analysis and Design, Sequential Logic Design, Programmable Logic Devices, Memory, Introduction to VHDL, Behavioral Modeling, Sequential Processing, Data Types	electronic devices which make up larger electronic equipment.
Core Course (CC) - 9 Practical ELT-A-CC-4-9-P: Digital Electronics and VHDL Lab	
Hardware 1. To Verify and Design AND, OR, NOT and XOR Gates using NANDGates. 2. To Convert a Boolean Expression into Logic Gate Circuit and Assemble it using Logic Gate IC's. 3. Design Half and Full Adder. 4. Design Half and Full Subtractor. 5. Design Seven Segment Display Driver. 6. Design 4 × 1 Multiplexer using Gates.	4.2.2 The related practical knowledge to understand electronic circuits.
7. To Build Flip-Flop Circuits (RS, Clocked RS,	

		F) & 12 (B) OF THE UGC ACT, 1956
	D-type) using Elementary Gates.	
8.	Design Counters (Ring, Ripple, Johnson and	
	Mod-N) using D/T/JK Flip-Flop.	
9.	2 2	
	Parallel Shifting of Data.	
Experime	nts in VHDL (Circuit Simulation)	
1.	Write Code to Realize Basic and Derived Logic	
	Gates.	
2.	Half Adder and Full Adder using Basic and	
	Derived Gates.	
3.	Half Subtractor and Full Subtractor using Basic	
	and Derived Gates.	
4.	,	
_	Inputs).	
5.	Multiplexer $(4\times1, 8\times1)$ and Demultiplexer	
	using Logic Gates.	
6.	Decoder (2×4, 3×8), Encoders and Priority	
_	Encoders.	
7.	ε	
8.	\ 3	
0	Versa).	
9.	2 1	
10.	3-bit Ripple Counter.	
	rse (CC) – 10 Theory	4.3.1 Understanding signals and how systems
	C-4-10-TH: Signals and Systems	are built based on different signals.
Signals	and Systems, Linear Time Invariant	are every every on willeren engineer
Systems	(LTI), Fourier Series, Fourier Transform,	
Z-Transfo		
Z II alisi	orii,	
	· · · · · · · · · · · · · · · · · · ·	4.3.2 Mathematical coding to understand signals.
Core Cou	orm, rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab	4.3.2 Mathematical coding to understand signals.
Core Cou ELT-A-C	rse (CC) - 10 Practical	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-Co Sci	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-Co Sci	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-Co Sci	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CO Scr Sir 1.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sir 1. 2.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CO Sci Sir 1. 2. 3.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals.	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of	4.3.2 Mathematical coding to understand signals.
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented	4.3.2 Mathematical coding to understand signals.
Core Coun ELT-A-CC Sci 1. 2. 3. 4. 5. 6. 7. 8.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams.	
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6. 7. 8. 9.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) CC-4-B-1-TH: Internet and Java Programming	4.3.2 Mathematical coding to understand signals. 4.4.1 Internet and Java Programming
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6. 7. 8. 9.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams.	
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6. 7. 8. 9.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) CC-4-B-1-TH: Internet and Java Programming	
Core Cour ELT-A-CC Sci Sin 1. 2. 3. 4. 5. 6. 7. 8. 9. SEC-2: GI ELT-A-SE Internet, Control,	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) EC-4-B-1-TH: Internet and Java Programming Data types, Arrays, Operators, Flow Exception Handling, File Handling	4.4.1 Internet and Java Programming
Core Coun ELT-A-CC Sci 1. 2. 3. 4. 5. 6. 7. 8. 9. SEC-2: GI ELT-A-SE Internet, 1 Control, 1	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) CC-4-B-1-TH: Internet and Java Programming Data types, Arrays, Operators, Flow Exception Handling, File Handling roup-B (SEC-B) Option-2 (SEC-2-B-2)	
Core Coun ELT-A-CC Sci 3. 4. 5. 6. 7. 8. 9. SEC-2: GI ELT-A-SE Internet, I Control, I SEC-2: GI ELT-A-SE	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) CC-4-B-1-TH: Internet and Java Programming Data types, Arrays, Operators, Flow Exception Handling, File Handling roup-B (SEC-B) Option-2 (SEC-2-B-2) CC-4-B-2-TH: Programming with	4.4.1 Internet and Java Programming
Core Coun ELT-A-CC Sci 3. 4. 5. 6. 7. 8. 9. SEC-2: Gi ELT-A-SE Internet, 1 Control, 1 SEC-2: Gi ELT-A-SE Matlab/Sc	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. Toup-B (SEC-B) Option-1 (SEC-2-B-1) CC-4-B-1-TH: Internet and Java Programming Data types, Arrays, Operators, Flow Exception Handling, File Handling Toup-B (SEC-B) Option-2 (SEC-2-B-2) CC-4-B-2-TH: Programming with ilab	4.4.1 Internet and Java Programming
SEC-2: Gr ELT-A-SE Internet, Control, SEC-2: Gr ELT-A-SE Matlab/Sc MATLA	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) EC-4-B-1-TH: Internet and Java Programming Data types, Arrays, Operators, Flow Exception Handling, File Handling roup-B (SEC-B) Option-2 (SEC-2-B-2) EC-4-B-2-TH: Programming with ilab B Basics, Matrices and Vectors, Computer	4.4.1 Internet and Java Programming
SEC-2: Gr ELT-A-CO Sci Sii 1. 2. 3. 4. 5. 6. 7. 8. 9.	rse (CC) - 10 Practical C-4-10-P: Signals and Systems Lab ilab/MATLAB/Any Other Mathematical nulation Software Generation of Continuous Time Signals. Generation of Discrete Time Signals. Time Shifting and Time Scaling of Signals. Convolution of Signals. Solution of Difference Equations. Fourier Series Representation of Continuous Time Signals. Fourier Transform of Continuous Time Signals. Laplace Transform of Continuous Time Signals. Introduction to Xcos/Similar Function and Calculation of Output of Systems Represented by Block Diagrams. roup-B (SEC-B) Option-1 (SEC-2-B-1) CC-4-B-1-TH: Internet and Java Programming Data types, Arrays, Operators, Flow Exception Handling, File Handling roup-B (SEC-B) Option-2 (SEC-2-B-2) CC-4-B-2-TH: Programming with ilab B Basics, Matrices and Vectors, Computer ming, MATLAB Programming, Numerical	4.4.1 Internet and Java Programming

RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956			
Semester – V			
Core Course - 11 Theory ELT-A-CC-5-11-TH: Electronic Instrumentation			
Qualities of Measurement, Basic Measurement	5.1.1 Understanding electrical and		
Instruments, Connectors and Probes, Measurement	electronic measurement.		
of Resistance and Impedance, A-D and D-A			
Conversion, Oscilloscope, Signal Generators,			
Transducers and Sensors			
Core Course - 11 Practical ELT-A-CC-5-11-P: Electronic Instrumentation Lab			
Design of Multi Range Ammeter and Voltmeter using Galvanometer.	5.1.2 Related practical		
2. Measurement of Resistance by Wheatstone			
Bridge and Measurement of Bridge Sensitivity.			
3. Measurement of Capacitance by de' Sautys.			
4. Measure of Low Resistance by Kelvin's Double Bridge.			
5. Design and Implementation of Instrumentation Amplifier using 741 Op-Amp.			
6. To Determine the Characteristics of			
Resistance Transducer - Strain			
Gauge (Measurement of Strain using			
Half and Full Bridge). 7. To Determine the Characteristics of LVDT.			
7. To Determine the Characteristics of LVDT.8. To Determine the Characteristics of Thermistors			
and RTD.			
9. Measurement of Temperature by			
Thermocouples and Study of			
Transducers like AD590 (Two Terminal Temperature Sensor),			
PT-100, J- type, K-type.			
10. To Study the Characteristics of LDR,			
Photodiode, and Phototransistor:			
(a) Variable Illumination; (b) Linear			
Displacement.			
 Design and Implementation of Temperature Controller. 			
Core Course - 12 Theory			
ELT-A-CC-5-12-TH: Microprocessors and			
Microcontrollers	501)6		
Introduction to Microprocessors, Microprocessor	-		
8085,8085 Instructions, Introduction to			
Microcontrollers, PIC16F887 Microcontroller,			
Interfacing to PIC16F887			
Core Course - 12 Practical			
ELT-A-CC-5-12-P: Microprocessors and			
Microcontrollers Lab Assembly Language Programming:	5.2.2 Practicals on coding in microprocessors and		
1. Program to Transfer a Block of Data.			
2. Program for Multibyte Addition.	microcontrollers		
3. Program for Multibyte Subtraction.			
4. Program to Multiply Two 8 Bit Numbers.			
5. Program to Divide a 16 Bit Number by 8 Bit			
Number.			
6. Program to Search a given Number in a given			

	RECOGNISED UNDER SECTION 2	1 J & 12 (D) Of THE OUC ACT, 1750
7	List.	
7.	Program to Generate Terms of Fibonacci Series.	
8.	Program to find Minimum and Maximum	
	among N Numbers.	
9.	Program to find the Square Root of an Integer.	
	Program to find GCD of Two Numbers.	
11.	Program to Sort Numbers in	
	Ascending/Descending Order.	
12.	Program to Verify the Truth Table of Logic	
	Gates.	
PIC Micro	controller Programming:	
1 ic wiicio 1.		
2.	Solid State Relay Interface.	
3.	Interfacing of LCD(2×16).	
4.	Interfacing of Stepper Motor and	
	Rotating Stepper Motor by N Steps	
	Clockwise/Anticlockwise with Speed	
-	Control.	
5.	To Test all the Gates of a given IC74XX is	
	Good or Bad.	
6.	Generate Sine, Square, Sawtooth, Triangular	
_	and Staircase Waveform using DAC Interface.	
7.	Display of 4-Digit Decimal Number using the	
	Multiplexed 7-Segment Display Interface.	
8.	Analog to Digital Conversion using Internal	
_	ADC and Display the Result on LCD.	
9.	Implementation of DC Voltmeter (0-5V) using	
	Internal ADC and LCD.	
10.	Digital to Analog Conversion using PWM	
	(Pulse Delayto be Implemented using Timers).	
11.	Speed Control of DC Motor using PWM (Pulse	
	Delay to be Implemented using Timers).	
12.	Interfacing of Matrix Keyboard (4×4).	
13.	Serial Communication between Microcontroller	
	and PC.	
Discipline	Specific Electives (DSE) - 1	
-	roup-A (DSE-A) Option-1 (DSE-1-A-1)	
Theory		
Techniqu	es	501TI 1
		5.3.1 Understanding various mathematical tools to
and Poly	ynomial Equations, Interpolation and	solve complex equations.
Polynomi	al Approximations, Curve Fitting,	
	l Integration, Numerical Differentiation,	
	l methods for first order differential	
	, Numerical Methods in Linear Algebra,	
Matrix Ei		
	Group-A (DSE-A) Option-1 (DSE-1-A-1)	
Practical	ELT-A-DSE-5-A-1-P: Numerical	
Techniqu	ies Lab	
		5.3.2 Coding practical to implement such tools
	Language/Scilab/MatLab/Any Other	61
Ma	thematical Simulation Software	
1.	Program to Implement Bisection Method.	
2.	Program to Implement Secant Method.	
3.	Program to Implement Regula Falsi Method.	
4.	Program to Implement Newton Raphson	

RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956
Method. 5. Program to Implement Trapezoidal Rule. 6. Program to Implement Simpson's Rule. 7. Program to Implement Runge Kutta Method. 8. Program to Implement Euler-Cauchy Method. 9. Program to Implement Gauss-Jordon Method. 10. Program to Implement Gauss-Seidel Iteration. 11. Program to Implement Newton Forward/Backward Interpolation. 12. Program to Implement Lagrange's Interpolation.	
DSE-1: Group-A (DSE-A) Option-2 (DSE-1-A-2) Theory ELT-A-DSE-5-A-2-TH: Control Systems	
Introduction to Control Systems, Time Domain Analysis, Concept of Stability, Frequency Domain Analysis, State Space Analysis, Controllers and Compensation Techniques DSE-1: Group-A (DSE-A) Option-2 (DSE-1-A-2) Practical ELT-A-DSE-5-A-2-P: Control Systems Lab Implementation using Hardware and Scilab/MATLAB/Any Other Circuit Simulation Software 1. To Study Characteristics of: (a) Synchro Transmitter Receiver; (b) Synchro as Error Detector. 2. To Study Position Control of DC Motor. 3. To Study Speed Control of DC Motor. 4. To Find Characteristics of AC Servo Motor. 5. To Study Time Response of Type 0, 1 and 2 Systems. 6. To Study Frequency Response of First and Second Order Systems. 7. To Study Time Response Characteristics of Second Order System. 8. To Study Effect of Damping Factor on	5.4.1 Understanding electronic control systems 5.4.2 Related practical
Performance of Second Order System. 9. To Study Frequency Response of Lead and Lag Networks. 10. Study of P, PI and PID Controller.	
Discipline Specific Electives (DSE) - 2 DSE-2: Group-B (DSE-B) Option-1 (DSE-2-B-1) Theory ELT-A-DSE-5-B-1-TH: Semiconductor Fabrication and Characterization Introduction of Semiconductor Process Technology, Epitaxy Deposition, Characterization, Oxidation, Diffusion, Lithographic Processes, Etching,, Metallization, Process Integration	5.5.1 Understanding chip fabrication processes
DSE-2: Group-B (DSE-B) Option-1 (DSE-2-B-1) Practical ELT-A-DSE-5-B-1-P: Semiconductor Fabrication	

RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956
and Characterization Lab	
 To Measure the Resistivity of Semiconductor Crystal with Temperature by Four-Probe Method. To Determine the Type (n or p) and Mobility of Semiconductor Material using Hall-Effect. Oxidation Process Simulation. Diffusion Process Simulation. Process Integration Simulation. Fabrication of Thin Film using Spin Coating System. Crystallographic Analysis and Particle Size Determination by X-Ray Diffraction (XRD) (of the given XRD Spectra). Introduction to JCPDS Card. Determination of Optical Bandgap through Transmission Spectra from Published Literature. 	5.5.2 Related practical
DSE-2: Group-B (DSE-B) Option-2 (DSE-2-B-2)	
Theory ELT-A-DSE-5-B-2-TH: Power Electronics Power Devices, Silicon Controlled Rectifier (SCR), Diac and Triac, Insulated Gate Bipolar Transistors (IGBT), Application of SCR, Power MOSFETs, Power Inverters, Choppers, Regulators and Converters, Electromechanical Machines DSE-2: Group-B (DSE-B) Option-2 (DSE-B-2) Practical ELT-A-DSE-5-B-2-P: Power Electronics Lab 1. Study of I-V Characteristics of DIAC. 2. Study of I-V Characteristics of a TRIAC. 3. Study of I-V Characteristics of a SCR.	
 SCR as a Half Wave and Full Wave Rectifiers with R and RL Loads. DC Motor Control using SCR. DC Motor Control using TRIAC. AC Voltage Controller using TRIAC with UJT Triggering. Study of Parallel and Bridge Inverter. Design of Snubber Circuit. V-I Characteristic of MOSFET and IGBT (Both). Study of Chopper Circuits. 	
Semest	er – VI
Core Course - 13 Theory ELT-A-CC-6-13-TH: Communication Electronics	
Electronic Communication, Amplitude Modulation, Angle Modulation, Pulse Analog Modulation, Pulse Code Modulation, Digital	

	F) & 12 (B) OF THE UGC ACT, 1956
Carrier Modulation Techniques	
Core Course - 13 Practical ELT-A-CC-6-13-P: Communication Electronics Lab	
Hardware and Circuit Simulation Software 1. Study of Amplitude Modulation. 2. Study of Amplitude Demodulation. 3. Study of Frequency Modulation. 4. Study of Frequency Demodulation. 5. Study of Pulse Amplitude Modulation. 6. Study of Pulse Width Modulation. 7. Study of Pulse Position Modulation. 8. Study of Pulse Code Modulation. 9. Study of Amplitude Shift Keying. 10. Study of Phase Shift Keying. 11. Study of Frequency Shift Keying.	6.1.2 Related practical
Core Course - 14 Theory ELT-A-CC-6-14-TH: Photonics	
Light as Electromagnetic Wave, Interference, Diffraction, Polarization, Light Emitting Diodes, Lasers, Photodetectors, LCD Displays, Guided Waves and Optical Fiber	
Core Course - 14 Practical ELT-A-CC-6-14-P: Photonics Lab	
 To Determine Wavelength of Sodium Light using Newton's Rings. To Determine the Resolving Power and Dispersive Power of Diffraction Grating. Diffraction Experiments using a Laser. To Determine the Specific Rotation of Scan Sugar using Polarimeter. To Determine Characteristics of LEDs and Photo-Detector. To Measure the Numerical Aperture of an Optical Fiber. 	6.2.2 Related practical
Discipline Specific Electives (DSE) - 3 DSE-3: Group-A (DSE-A) Option-1 (DSE-3-A-1) Theory ELT-A-DSE-6-A-1-TH: Basic VLSI Design	
Metal Oxide Semiconductor (MOS), MOS Inverter, Combinational MOS Logic Design, Memory Design	6.3.1 Understanding basic VLSI
DSE-3: Group-A (DSE-A): Option-1 (DSE-3-A- 1) Practical ELT-A-DSE-6-A-1-P: Basic VLSI Design Lab	
Implementation using Hardware and/or any Circuit Simulation Software	6.3.2 Related practical

	(F) & 12 (B) OF THE UGC ACT, 1956
To Plot the Output Characteristics and Transfer Characteristics of n-Channel and p-Channel MOSFET.	
 To Design and Plot the Static (VTC) and Dynamic Characteristics of Digital CMOS Inverter To Design and Plot the Output Characteristics of 3-Inverter RingOscillator. 	
3. To Design and Plot the Dynamic Characteristics of 2-Input NAND, NOR, XOR and XNOR Logic Gates using CMOS Technology.	
4. To Design and Plot the Characteristics of a 4×1 Digital Multiplexer using Pass TransistorLogic	
5. To Design and Plot the Characteristics of a Positive and Negative Latch Based on Multiplexers.	
6. To Design and Plot the Characteristics of a Master-Slave Positive and Negative Edge Triggered registers Based on Multiplexers.	
DSE-3: Group-A (DSE-A) Option-2 (DSE-3-A-2)	
Theory ELT-A-DSE-6-A-2-TH: Digital Signal Processing	
Discrete Time Systems, Network Synthesis,	6.4.1 Understanding digital signal processing
Discrete Fourier Transform, Digital Filters	(DSP)
DSE-3: Group-A (DSE-A) Option-2 (DSE-3-A-2) Practical ELT-A-DSE-6-A-2-P: Digital Signal	
Processing Lab	
Implementation using Scilab/MATLAB/Any Other Mathematical Simulation Software 1. Generation of Unit Sample Sequence, Unit Step, Ramp Function, Discrete Time Sequence, Real Sinusoidal Sequence. 2. Generate and Plot Sequences over an Interval. 3. Given x[n], Write Program to Find X[z]. 4. Fourier Transform, Discrete Fourier Transform and Fast Fourier Transform. 5. Design of a Butterworth Analog Filter for Low Pass and High Pass. 6. Design of Digital Filters.	6.4.2 Related practical
Discipline Specific Electives (DSE) - 4 DSE-4: Group-B (DSE-B) Option-1 (DSE-4-B-1)	
Theory ELT-A-DSE-6-B-1-TH: Biomedical	
Instrumentation	
	6.5.1 Understanding biomedical instrumentation
Transducers, Patient Monitoring Systems and	
Audiometers, Modern Imaging Systems, Patients	
Safety and Computer Applications in Biomedica	II I
Liald Dhygaothagany	1
Field, Physiotherapy DSE-4: Group-B (DSE-B) Option-1 (DSE-4-B-1)	

RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956
Instrumentation Lab	
 Characterization of Bio Potential Amplifier for ECG Signals. Study on ECG Simulator. Measurement of Heart Sound using Electronic Stethoscope. Study on ECG Heart Rate Monitor/Simulator. Study of Pulse Rate Monitor with Alarm System. Determination Pulmonary Function using Spirometer (using Mechanical System). Measurement of Respiration Rate using Thermistor/Other Electrodes. Study of Respiration Rate Monitor/Apnea Monitor. Study on Ultrasound Transducers Based on Medical System. Study of Pacemaker. Measurement of Pulse Rate using Photoelectric Transducer and Pulse Counting for known Period. 	6.5.2 Related practical
Waveguides, Antenna Fundamentals and Parameters, Antenna as Transmitter/Receiver, Types of Antennas (Qualitative Study Only), Propagation of Radio Waves, Microwave	6.6.1 Understanding electronics sender/receiver systems
Devices (Qualitative Study Only) DSE-4: Group-B (DSE-B) Option-2 (DSE-4-B-2) Practical ELT-A-DSE-6-B-2-P: Transmission Lines, Antenna and Microwave Devices Lab	
Implementation with Hardware and/or SciLab/MATLAB/Any Other Mathematical Simulation Software 1. Program to Determine the Phasor of Forward Propagating Field. 2. Program to Determine the Instantaneous Field of Plane Wave. 3. Program to Find the Phase Constant, Phase Velocity, Electric Field Intensity and Intrinsic Ratio. 4. Program to Find Skin Depth, Loss Tangent and Phase Velocity. 5. Program to Determine the Total Voltage as Function of Time and Position in Loss Less Transmission Line. 6. Program to Find the Characteristic Impedance, Phase Constant and Phase Velocity. 7. Program to Find the Output Power and	6.6.2 Related practical

Attenuation	Coefficient.

- 8. Program to Find the Power Dissipated in Lossless Transmission Line.
- 9. Program to Find the Total Loss in Lossy Lines.
- Program to Find the Load Impedance of Slotted Line.
- 11. Program to Find the Input Impedance of Transmission Line Terminated with Pure CapacitiveImpedance.
- 12. Program to Determine the Operating Range of Frequency for TE₁₀ Mode of Air-Filled Rectangular Waveguide.
- 13. Program to Determine Directivity, Bandwidth, Beamwidth of Antenna.
- 14. Program to Determine Diameter of Parabolic Reflector.
- 15. Program to Find Minimum Distance between Primary and Secondaryantenna.
- 16. Simple Problems using Smith Chart.

A MINORITY RUN COLLEGE. AFFILIATED TO UNIVERSITY OF CALCUTTA RECOGNISED UNDER SECTION 2(F) & 12 (B) OF THE UGC ACT, 1956

PO CO mapping for Graduation Degree Course of Electronics Honours (CBCS)

Course Outcomes (CO)	Program Outcomes (PO)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7
1.1.1	$\sqrt{}$	V		√	$\sqrt{}$		
1.1.2		V	V		$\sqrt{}$		V
1.2.1		V		V	$\sqrt{}$		V
1.2.2		V			$\sqrt{}$		V
2.1.1	$\sqrt{}$	V				$\sqrt{}$	
2.1.2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		
2.2.1	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	
2.2.2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		V
3.1.1	$\sqrt{}$				$\sqrt{}$	\checkmark	
3.1.2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				V
3.2.1	$\sqrt{}$	V				$\sqrt{}$	
3.2.2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		V
3.3.1				1		$\sqrt{}$	
3.3.2	$\sqrt{}$	V	V		$\sqrt{}$		V
3.4.1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
3.5.1		V	$\sqrt{}$		$\sqrt{}$		V
4.1.1	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	
4.1.2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
4.2.1	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	
4.2.2		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
4.3.1	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	
4.3.2		V	√		$\sqrt{}$		$\sqrt{}$
4.4.1		V	$\sqrt{}$	√	$\sqrt{}$		V
4.5.1	√	V	$\sqrt{}$	√	$\sqrt{}$		$\sqrt{}$
5.1.1	√	V			$\sqrt{}$		
5.1.2	√	V	$\sqrt{}$		V		V
5.2.1	√	V			$\sqrt{}$,
5.2.2	√	V			V		V
5.3.1	√	V			$\sqrt{}$,
5.3.2	√	V	$\sqrt{}$		$\sqrt{}$		V
5.4.1	√	V			$\sqrt{}$,
5.4.2	√	V			V		V
5.5.1	√	V			V	$\sqrt{}$	
5.5.2	√,	V			$\sqrt{}$,	V
5.6.1	√ 	V	,		√,	$\sqrt{}$	
5.6.2	√ 	V	$\sqrt{}$		√,	1	V
6.1.1	√	V			V	$\sqrt{}$,
6.1.2	√ 	V	$\sqrt{}$		√,	1	V
6.2.1	√	V	,		√,	$\sqrt{}$,
6.2.2	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		$\sqrt{}$

6.3.1	V	V		$\sqrt{}$	$\sqrt{}$	
6.3.2			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
6.4.1		V		$\sqrt{}$	$\sqrt{}$	
6.4.2		V		$\sqrt{}$		$\sqrt{}$
6.5.1	V	V		$\sqrt{}$	$\sqrt{}$	
6.5.2	V	V		$\sqrt{}$		$\sqrt{}$
6.6.1		V		$\sqrt{}$	$\sqrt{}$	
6.6.2	V	V		V		V